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Abstract

Background. Dosing of most drugs must be adapted
in renal insufficiency, making accurate assessment
of renal function essential in clinical medicine.
Furthermore, even modest impairment of renal func-
tion has been recognized as a cardiovascular risk
factor. The purpose of this analysis was to identify
the role of symmetric dimethylarginine (SDMA),
the structural isomer of the cardiovascular risk marker
asymmetric dimethylarginine, as an endogenous
marker of renal function.
Methods. Comprehensive searches of Medline and the
Cochrane Library from 1970 to February 2006 were
performed to identify studies that evaluated the
correlation between SDMA and renal function. The
search was augmented by scanning references of
identified articles and reviews. The correlation coeffi-
cients (R) were recorded from each study for the values
of 1/SDMA and clearance estimates and for SDMA
and creatinine levels. The summary correlation coeffi-
cients with 95% confidence intervals (CIs) were pooled
using the random-effects method.
Results. In 18 studies involving 2136 patients systemic
SDMA concentrations correlated highly with inulin
clearance [R¼ 0.85 (CI 0.76–0.91, P< 0.0001)], as well
as with various clearance estimates combined [R¼ 0.77
(CI 0.65–0.85, P< 0.0001)] and serum creatinine
[R¼ 0.75 (CI 0.46–089, P< 0.0001)].
Conclusions. SDMA exhibits some properties of a
reliable marker of renal function. Future studies have
to clarify whether SDMA is indeed suited to improve
diagnosis and eventually optimize care of patients.
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Symmetric dimethylarginine (SDMA)—a novel

endogenous marker for renal dysfunction

The dosing of most drugs must be adapted in renal
insufficiency, making accurate assessment of renal
function a prerequisite in clinical medicine, especially
in the elderly. Furthermore, even a modest decline
in renal function has been recognized as a cardio-
vascular risk factor [1]. However, the diagnosis of
kidney impairment is hampered by the lack of reliable
markers of glomerular filtration rate (GFR). The
gold standard, inulin clearance, is cumbersome and
expensive, reducing its utility in clinical practice.
This is also true for estimations using the clearance
of radioisotopes. Therefore, in clinical practice,
serum creatinine alone or in conjunction with a timed
urine collection for creatinine clearance is typically
used to assess renal function. Despite practical
applicability and affordability, creatinine clearance
estimates show considerable inter-individual variability
associated with muscle mass, protein intake, age
and sex. Moreover, obtaining accurate 24-h timed
urine collections are labour-intensive and fraught
with difficulties for individual patients such as
infants, the very elderly and those with urologic
abnormalities. Consequently, there is an ongoing
search for suitable alternative endogenous markers
of renal function.

Dimethylarginines had been known to biochemists
for decades [2,3]. In the last decade scientists focused
mainly on asymmetric dimethylarginine (ADMA),
which had been shown to correlate with traditional
and non-traditional cardiovascular risk factors as
reviewed by Cooke [4]. Moreover, ADMA is a
strong predictor of cardiovascular events and death
in selected patient populations [5] and a marker of
progression of various chronic renal diseases [6,7].
Until recently, little attention has been paid to the role
of the structural isomer of ADMA—symmetric
dimethylarginine (SDMA).
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Search strategy, selection criteria and

statistical analysis

We comprehensively searched Medline and the
Cochrane Library from 1970 through February 2006
using the following medical subject headings: renal
function, creatinine, GFR, SDMA and symmetric
dimethylarginine. We supplemented the search by
scanning the references of selected articles identified
by this strategy and review articles. We did not restrict
the language of publication. Furthermore, abstracts
from the Meetings of the International Society of
Nephrology, European Dialysis and Transplant
Organization and the American Society of
Nephrology were evaluated. We included studies that
evaluated SDMA and provided correlation coefficients
(Pearson or Spearman) to any measure of renal
function [GFR estimates by inulin clearance, radio-
isotope methods, Cockroft–Gault equation,
Modification of Diet in Renal Disease (MDRD)
formula or measurement of serum creatinine]. The
correlation coefficient for one study [8] was obtained
by personal communication. Measurements of
ADMA and SDMA were determined using high-
performance liquid chromatography (HPLC) or
liquid chromatography–mass spectrometry.

We excluded studies that reported data on SDMA
and renal function without analysing the correlation
[9–12]. In addition, we excluded studies of patients
with advanced, stage 5 chronic kidney disease, because
creatinine and SDMA rise exponentially with decreas-
ing renal function [13].

The Pearson or Spearman correlation coefficients
were recorded from each study for the values of

1/SDMA and clearance estimates and for SDMA and
creatinine levels. The summary correlation coefficients
with 95% confidence intervals (CI) were obtained by
pooling the logarithmic z-values derived from the
individual trial correlation coefficients. The results
were pooled using the random-effects methods because
of the potential for inter-study heterogeneity [14].
In the identified studies the correlation coefficient
between ADMA and parameters of renal function was
also obtained, if available, and is reported in Table 1.
Additionally, we performed a subgroup analysis
evaluating the influence of gender and age on plasma
SDMA in two of the original data sets available to
us [6,15].

Results

We identified 18 studies involving a total of 2136
patients (Table 1). Uniformly these studies revealed
strong and highly significant correlations between
SDMA and renal function (Figure 1). The correlation
coefficient (R) between SDMA and inulin clearance
was 0.85 (CI 0.76–0.91, P< 0.0001), and for various
GFR estimates it was 0.77 (CI 0.65–0.85, P< 0.0001).
The correlation coefficient for SDMA and serum
creatinine was 0.75 (CI 0.46–0.89, P< 0.0001), and
for all estimates of renal function combined it was
(CI 0.65–0.84, P< 0.0001).

A subgroup analysis of data from the study
by Bode-Boger et al. [15] did not demonstrate
a difference in the creatinine-based estimation of
GFR between women (n¼ 37, R¼ 0.76, P< 0.01)
and men (n¼ 81, R¼ 0.72, P< 0.01). This was also
true for the iothalamate-based clearance estimation by

Table 1. Summary of studies on SDMA, ADMA and renal function

Author [reference] Population n measure of renal function SDMA correlation (r, P) ADMA correlation (r, P)

Clearance methods
Tarnow et al. [8] IDDM 394 chrome EDTA clearance 0.898, P< 0.0001 0.44, P< 0.001
Fliser et al. [6] CKD 227 iothalamate clearance 0.837, P< 0.01 0.591, P< 0.01
Bode-Boger [15] CAD 147 MDRD GFR 0.622, P< 0.01 0.217, P¼ 0.011
Wang et al. [36] CAD 145 Cockroft–Gault 0.45, P< 0.001 0.21, P< 0.01
Al Banchaabouchi [19] CKD 135 creatinine clearance 0.714, P< 0.0001 0.703, P< 0.0001
Marescau et al. [23] CKD 135 Cockroft–Gault 0.916, P<0.0001 0.861, P< 0.0001
Nanayakkara et al. [37] CKD 93 Cockroft–Gault 0.727, P< 0.0001 0.342, P¼ 0.023
Dalton et al. [25] Children 49 inulin clearance 0.8892, P< 0.001 0.1212, NS
Kielstein et al. [24] CKD 44 inulin clearance 0.78, P< 0.0001 0.26, P¼ 0.09
Goonasekera et al. [22] Children with HTN 38 GFR (Morris) 0.38, P< 0.02 0.77, P< 0.001

Serum creatinine
Wanby et al. [38] CVD 363 serum creatinine 0.26, P< 0.001 0.19, P< 0.01
Fliser et al. [6] CKD 227 serum creatinine 0.894, P< 0.01 0.595, P< 0.01
Fleck et al. [39] CKD 96 serum creatinine 0.83, P< 0.01 –, NS

renal transplant 40 serum creatinine 0.94, P< 0.001 –, NS
Ellis et al. [40] pregnant women 65 serum creatinine 0.694, P< 0.001 –, NS
Nijveldt et al. [41] CAD 20 serum creatinine 0.607, P¼ 0.005 –, NS
Nijveldt et al. [33] ICU patients 52 serum creatinine 0.80, P< 0.001 0.142, NS
Krzyzanowska et al. [42] GHD 44 serum creatinine 0.48, P< 0.005 –, NS
Siroen et al. [43] pregnancy 38 serum creatinine 0.40, P¼ 0.013 –, NS
Lluch et al. [44] HRS 11 serum creatinine 0.765, P< 0.001 0.038, P¼ 0.564

CKD, chronic kidney disease; CAD, coronary artery disease; CVD, cerebrovascular disease; GHD, growth hormone deficiency;
HTN, hypertension; IDDM, insulin dependent diabetes mellitus; HRS, hepatorenal syndrome; NS, not significant.
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Fliser et al. [6], in which SDMA correlated with GFR
in both women (n¼ 73, R¼ 0.69, P< 0.01) and men
(n¼ 154, R¼ 0.69, P< 0.01). In both studies SDMA
was also significantly correlated with age R¼ 0.272
(P¼ 0.001) [15] and R¼ 0.28 (P< 0.01) [6], respec-
tively. In contrast to SDMA, ADMA showed a
correlation to markers of renal function in only some
studies (Table 1).

Discussion

Our meta-analysis included data from over 2100
patients to confirm that SDMA is an endogenous
marker of renal function. Plasma SDMA levels
correlate highly with GFR as assessed by creatinine
or inulin clearance.

The presence of SDMA in human brain tissue was
first reported in 1971 by Nakajima et al. [16].
Subsequently, it has become clear that SDMA, as
well as the other methylarginines such as monomethyl-
arginine and ADMA, are produced in every nucleated
cell. The methylation of arginine residues appears
to be required for RNA processing, protein shuttling
and signal transduction. Methylation of arginine

residues is catalysed by a group of enzymes called
protein arginine N-methyltransferases, leading to the
formation of proteins containing mono- or
di-methylated arginine derivatives and S-adenosyl-L-
homocysteine [17]. When the proteins undergo prote-
olysis, free methylarginines are released, and SDMA
and ADMA are excreted in the urine [2]. McDermott
[3] provided evidence that SDMA is mainly eliminated
by renal excretion, whereas ADMA is largely
metabolized.

Since Vallance and co-workers [18] evaluated
ADMA accumulation in renal failure in their land-
mark paper and could not show an influence of SDMA
on the elaboration of nitric oxide (NO) in vitro, little
attention was paid to this substance. However, data
from several studies have suggested that SDMA
correlates well with parameters of renal function,
in humans as well as in rodents [19]. Plasma SDMA
levels increase in parallel with creatinine and blood
urea nitrogen after total nephrectomy [20]. In dogs,
SDMA has also been shown to correlate well with
serum creatinine [21]. Goonasekera and co-workers
[22] were the first to report the correlation between
SDMA and GFR in children with hypertension.
Marescau et al. [23] described the close relationship

Study Year Study N  Correlation coefficient  P value

1 SDMA and Creatinine
 Ellis 2001                65            0.694        
 Fleck 2003            96            0.83         
 Fleck 2003          40            0.94        
 Fliser 2005               227            0.894        
 Krzyzanowska 2005          44            0.48         

 Nijveldt 2002             20            0.607       
 Nijveldt 2003             52            0.80         

 Wanby 2005                363           0.26         

Subtotal (95% CI)  956      0.75 [0.46, 0.89]

2 1/SDMA and Clearance 
 Banchaabouchi 2000        135            0.714        
 Bode-Boeger 2006          147            0.622       
 Dalton 2005             49            0.889        
 Fliser 2005              227            0.837        
 Goonasekera 1997          38            0.38        
 Kielstein 2002           44            0.78        
 Marescau 1997             135            0.916       
 Nanayakkara 2005           93            0.727       
 Tarnow 2004               394            0.898        
 Wang 2005                145            0.45        

Subtotal (95% CI) 1407      0.77 [0.65, 0.85]

Total (95% CI) 2363      0.76 [0.65, 0.84]

     <0.001        
     <0.01       
     <0.001       
     <0.01        
     <0.005        

 Lluch 2006          11            0.765              <0.001        
     <0.01        
     <0.001       

 Siroen 2006          38            0.40                0.013       
     <0.001        

     <0.0001

     <0.0001        
     <0.01        
     <0.001       
     <0.01        
     <0.02        
     <0.0001        
     <0.0001        
     <0.0001       
     <0.0001       
     <0.001        

     <0.0001

     <0.0001

 −1  −0.5 0 0.5 1
Correlation coefficient

Fig. 1. Correlation coefficients for SDMA and renal function. (A) SDMA and creatinine. (B) 1/SDMA and clearance.
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between SDMA and estimated GFR by the Cockroft–
Gault equation.

Although there is an excellent correlation between
SDMA and established estimates of GFR, it is not
known if SDMA fulfils all criteria for an ideal GFR
marker, i.e. stable production rate not affected by
other diseases, free glomerular filtration and lack of
tubular reabsorption. Nevertheless, our analysis of
the available information suggests SDMA has promise
as such a marker. Each of the 18 studies in our meta-
analysis, involving a total of 2136 patients, showed a
strong correlation between SDMA and renal function.
The largest study was conducted by Tarnow et al. [8],
who evaluated 394 type I diabetics using chrome
EDTA clearance and observed a very strong correla-
tion between SDMA and renal function. These high
correlations are also seen when the gold standard for
measurement of GFR, inulin clearance, was used [24]
or when children with various degrees of renal function
were studied [22,25]

The high correlation of SDMA and renal function
is of clinical importance since estimates of GFR from
serum creatinine are insensitive even to moderate
reductions in GFR and are complicated by consider-
able inter-individual variability due to muscle mass,
protein intake, age and sex [26–28]. Furthermore,
obtaining accurate, 24-h timed urine collections is
labour intensive and difficult to perform in certain
patient populations. Thus, a new stable, convenient
and clinically reliable marker of GFR would
be desirable. One such potential new marker
is cystatin-C, a cationic non-glycosylated low-
molecular-weight proteinase [29]. SDMA may have
advantages over other novel markers, particularly
when measured together with the emerging cardio-
vascular risk factor ADMA. The technologies of
HPLC or coupled gas chromatography–mass spectro-
metry (GL–MS) for the analysis of ADMA also
provide SDMA values with no additional effort.
Unfortunately, because SDMA does not directly
affect NO synthase activity [18] and because it is not
widely appreciated as a sensitive marker of renal
function, many investigators have failed to report
SDMA values in their studies of ADMA, even when
investigating patients with chronic kidney disease [30].

In addition to being an excellent marker of renal
function, SDMA may also have an indirect effect
on NO synthesis. SDMA inhibits the yþ transporter
that mediates the intracellular uptake of L-arginine [31]
and inhibits renal tubular arginine absorption [32].
These two mechanisms could indirectly inhibit NO
synthesis by interfering with L-arginine uptake.
In vitro, SDMA concentration in the physiological
range inhibit NO production in endothelial cells [15].
Furthermore, plasma SDMA levels are negatively
associated with the plasma L-arginine/ADMA ratio,
i.e. an indicator of NO production in vivo, and there is
evidence of a significant positive multivariate relation-
ship (P< 0.001) between SDMA and cardioembolic
infarction [15]. Whether this association of SDMA
with cardiovascular disease is due to its indirect effects

on NO synthesis, and/or to its relationship to renal
function, is not known. Another study that supports
the prognostic value of SDMA was performed in
seriously ill patients in the intensive care unit and
found that elevated plasma SDMA levels correlated
with the total sequential organ failure assessment
better than ADMA and indicated both renal and
hepatic failure [33].

In contrast to SDMA, ADMA generally did not
show a correlation to parameters of renal function.
This is not surprising as ADMA is mainly eliminated
from the body by enzymatic degradation. As there is a
high concentration of the ADMA degrading enzyme
(DDAH) in the kidney, it is however conceivable that,
depending on the reason for renal impairment, the
decline in renal excretory function is paralleled by a
reduction of DDAH activity (in the kidney). This
might serve as an explanation why ADMA is related to
parameters of renal function in some of the studies.

The main limitation of our analysis—the focus on
ADMA in all but two of the included studies [15,25]—
illustrates vividly the aim of this analysis. Most of
the studies were evaluating the role of ADMA in
cardiovascular pathology and only secondarily men-
tion SDMA. Therefore, these studies did not provide
actual values for SDMA and this GFR estimates. For
that reason, we cannot, at this point, make estimates
of GFR from SDMA. We hope that the presented
high correlation of SDMA with different established
parameters of renal function will encourage
investigators to include SDMA into their analysis.

Should we stop measuring creatinine and measure
SDMA instead? Although the measurement of creati-
nine as a parameter of renal function has many
limitations, it still fulfils requirements for use in
everyday clinical practice. It can be reliably and
inexpensively measured, and the ease of performance
combined with a good sensitivity and specificity describe
up the profile of this ‘classic’ in laboratory medicine,
which has been in use for decades. A recent paper
by Manolino [34] nicely summarized the dilemma
concerning new markers in clinical practice. Although
initial reports about novel markers provide exciting
clues into the pathophysiology of diseases and enable
us to improve diagnostic capabilities, translating
these into clinical application requires replication in
multiple settings as well as experimental evidence
supporting their benefit. Moreover, the high cost of
the HPLC- or GC–MS-based methods to measure
SDMA is still prohibitive for widespread clinical
application. However, SDMA may have a place in
a cardiology practice, where it could be measured in
combination with the cardiovascular risk marker
ADMA. Cardiologists often measure BNP and homo-
cysteine in patients at risk for cardiovascular disease,
and have recently become aware of the importance of
renal function as another cardiovascular risk factor
[35]. Hence, one could imagine that the determination
of ADMA and SDMA could be used as a combined
marker of classical cardiovascular risk and renal
function.
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Future studies will be needed to investigate whether
SDMA is indeed a stable, convenient and clinically
reliable marker of GFR, especially in patient popula-
tions in which assessment of the GFR is cumbersome,
as is suggested by our analysis. In addition, studies
are needed to evaluate the effect of SDMA on NO
synthesis and to elucidate its role in mediating the
detrimental effects of renal insufficiency on cardio-
vascular and all cause mortality.
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